
Abstract. Transport cross sections and collision inte-
grals are tabulated for a wide range of energies and
temperatures for the interactions B±B and Al±Al. For
aluminum, a semiclassical approximation was used to
determine the scattering phase shifts from which the
transport cross sections were calculated. For boron, the
smaller reduced mass and the deep potential wells
required the phase shifts at lower energies to be
determined from a numerical solution of the time-
independent Schroedinger equation; the semiclassical
approximation was used at higher energies where the
two methods agree. The variations of the collision
integrals for viscosity and di�usion are presented
graphically as a function of temperature. The results
are applied to estimate the transport properties of
gallium.
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1 Introduction

The transport properties of atom±atom interactions are
needed for studies of gases and plasmas such as those of
the high-temperature environment for aeroentry into
planetary atmospheres, processes for the construction or
preparation of certain electronic devices [1], and for the
study of stellar atmospheres. With the exception of
interactions involving rare-gas atoms, these properties
cannot be measured in the laboratory by the usual
methods because of the di�culty in producing gases with
a pure species concentration. Simpli®ed approximations
for the determination of atom±atom transport data are
often based on inappropriate potential functions with
parameters that are constructed from questionable
empirical rules. On the other hand, the accurate
theoretical determination of transport properties, in
general, is a laborious procedure since it requires a

complete set of interaction energies corresponding to all
possible paths available to the collision.

For interactions in which one of the collision partners
is a rare-gas atom such as helium, the computational
e�ort required for an accurate theoretical determination
is comparatively simple and studies are underway to
develope Aufbau relations from which the transport
properties of an X±X interaction can be inferred from
the properties of He±He and He±X interactions. The
veri®cation of the accuracy of these models requires that
the transport properties of test cases of the di�cult X±X
interactions be known for comparison with predictions
based on combining rules using He±X results.

The availability of complete sets of potential-energy
curves [2, 3] for B±B and Al±Al interactions permits the
calculation of the transport cross sections and the col-
lision integrals for these interactions. Moreover, since
the boron and aluminum atoms have the same spin and
angular quantum numbers, the scattering results provide
a test of candidate procedures for predicting transport
cross sections from the interactions of these atoms with
helium.

The computational methods are outlined in Sect. 2
and the salient properties of the interaction potentials
for boron and aluminum are described in Sect. 3. The
resulting transport cross sections and collision integrals
as a function of temperature for B±B and Al±Al are
presented in Sect. 4 and are used to estimate the trans-
port properties of gallium. Section 5 contains concluding
remarks.

2 Method

According to Chapman ± Enskog theory [4±6], the transport
properties of dilute monatomic gases can be expressed in terms of
the mean collision integrals,

�Xn;s�T � � F �n; s�
2�kBT �s�2

Z 1
0

exp�ÿE=kBT � Es�1 �Qn�E�dE ; �1�

where �Qn�E� is the mean transport cross section [ �Q1�E� is related to
momentum transfer and �Q2�E� is related to energy transfer], kB is
the Boltzmann constant, T is the kinetic temperature, and F �n; s� is
obtained from the relationCorrespondence to: E. Levin
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F �n; s� � 4�n� 1�
p�s� 1�!�2n� 1ÿ �ÿ1�n� : �2�

The transport cross sections, Qn�E�, can be obtained from the
scattering phase shifts, gl, which are calculated from the adiabatic
interaction energy of a given state of the molecule formed from the
colliding particles, i.e.,

Qn�E� � 4p
k2
X1
l�0

Xn

m>0

al
nm sin2�gl�m ÿ gl� ; �3�

where l is the angular momentum quantum number, k is the wave
number, and the allowed values of m are even or odd according to
the parity of n. The coe�cients al

nm can be determined by recursion
from

�2l� 1�xnPl�x� �
Xn

m�ÿn

al
nmPl�m�x� ; �4�

where Pl�x� is a Legendre polynomial. When the colliding pair can
interact through more than one state, the mean transport cross
section, �Qn�E�, the degeneracy-weighted average of the cross sec-
tions for all states, is the quantity used for the determination of
transport properties at high temperatures [6].

The above formulation is independent of the method used to
determine gl. The di�erence between the semiclassical and quantum
mechanical approaches lies in the method for calculating these
phase-shifts. The semiclassical method is based on a uniform
phase-shift approximation due to Stallcop [7]. This approximation
accounts for tunneling through the barrier of the e�ective potential
energy and also accounts for resonance scattering associated with
metastable energy levels of the inner potential well and virtual
energy levels above the barrier maximum. The detailed formulation
of the semiclassical phase-shift approximation can be found in our
previous work [8, 9].

For strongly bound interactions of small reduced mass, the
phase shifts must be determined quantum mechanically at the lower
kinetic energies. The method used to compute the phase shifts
quantum mechanically combines the techniques of R-matrix
propagation [10] and Richardson extrapolation [11]. This method
is computationally e�cient and has been presented in detail in
Ref. [12].

3 Interaction Potentials

Accurate ab initio potential-energy curves for the atomic
interactions of B±B and Al±Al were determined by
Langho� and Bauschlicher [2, 3], and the ground-state
singlet and triplet potentials are shown in Figs. 1 and 2.
More recent benchmark calculations [13±15] have
con®rmed the high quality of these interaction poten-
tials. From Eq. (1) it follows that the determination of
collision integrals over a wide range of temperatures
requires the calculation of transport cross sections for a
wide range of energies. The calculations were performed
using a code which accepts discrete potential-energy
data from ab initio electronic structure calculations,
incorporates the asymptotic form of the long-range
potential, and, as necessary, extends the ab initio data at
very short separation distances using an exponential
extrapolation.

The ab initio results [2, 3] are extended at large values
of the separation distance, r, using long - range expan-
sions of the interaction energies. For very low energy
applications, the spin-orbit interactions should be taken
into account; however, for the temperatures of our
present work, the KS coupling scheme of Refs. [2, 3]
should be adequate. The e�ect of the spin-orbit inter-
actions on transport data for low-temperature applica-

tions is discussed in Sect. 4. The leading electrostatic
coe�cient, C5, of the term C5=r5 arises from the inter-
action of the quadrupole moments of the atoms. The
values of these coe�cients have been determined from
the formulation of Chang [16] using the results of a
relativistic Hartree±Dirac calculation [17]. The leading
dispersion coe�cients, C6, have been obtained from the
well-known combination rule [18]

a�He�a�X �
C6�He;X � �

1

2

a�He�a�He�
C6�He;He� �

a�X �a�X �
C6�X ;X �

� �
�5�

Fig. 1. Potential-energy curves for the singlet states of boron and
aluminum

Fig. 2. Potential-energy curves for the triplet states of boron and
aluminum
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which is found [19] to be accurate to about 0.5%. The
quantity a is the polarizability of the atom and X
represents either boron or aluminum. The values of a are
obtained from calculations [20±22] and the value of
C6�He;He� is obtained from Ref. [20]. The values of
C6�He;X � have been extracted from the results of a high-
level calculation for interactions of atoms with helium.
Speci®cally, a coupled-cluster singles and doubles ap-
proach [23] that includes a perturbational correction for
triples [24] with large basis sets, atom-centered augment-
ed correlation-consistent polarized-valence quadruple
zeta of Dunning and coworkers [25±27] and midpoint-
centered bond functions [28] is combined with a
counterpoise method [29] to correct for basis-set super-
position error and thereby obtain accurate energies. The
small contribution to the interaction energy from higher-
order dispersion terms needed to obtain accurate values
of C6 from the calculated results was approximated by
the formulation of Starkshall and Gordon [30] using the
calculated moments of Ref. [17].

The values of C5 are listed in Table 1 and the values
of C6 are 77.03 for boron and 403.2 for aluminum. The
values of C8�X ;X � and C10�X ;X � required for the pres-
ent work were also obtained by the approximation
previously described for the higher-order dispersion
contributions. The interaction energies from the long-
range expansion are joined to the calculated results of
Refs. [2, 3] by exponential interpolation [8] or by a van
der Waals potential function [31] when the exchange
energy is attractive or repulsive, respectively.

From Figs. 1 and 2 it may be noted that each set of
six curves for a certain molecular spin contains a pair of
curves for 1R�g states. From Table 1 it may be concluded
that the molecule for the upper state dissociates into
atoms that are repelled by the quadrupole±quadrupole
interaction at large r, whereas the atoms of the lower
state are attracted by the dispersion forces. The behavior
of the potential curves for this pair of boron singlet
states shown in Fig. 1 indicates that an avoided crossing
occurs in the vicinity where the potential wells have a
minimum. Note that the quadrupole±quadrupole inter-
action can account for the broad behavior of the po-
tential-energy wells of certain states such as the lowest
1R�g ,

1Pg, and
3Pu states.

At separation distances shorter than those of the ab
initio calculations, as shown in Figs. 1 and 2, the data
were extended using an exponential ®t to obtain cross-
section data at high energies. From Eq. (1) it can be
shown that for temperatures of 3000 K collision cross
sections at energies up to about 0.15 Eh are needed for
an accurate approximation to the integral. It should be
noted that this extrapolation using an assumed form for
the short-range potential slightly degrades the overall
accuracy of the ®nal results for the collision integrals at
high temperatures.

4 Transport cross sections and collision integrals

The collision integrals are relatively insensitive to small
variations in the reduced mass, especially at higher
temperatures where the scattering can be described well
by classical mechanics; hence, we have used standard
atomic weights [32] for the present calculations. For
aluminum interactions, using a reduced mass of
13.4908 amu, the potential wells shown in Figs. 1 and 2
are relatively shallow and it was found that the semiclas-
sical method was adequate. For boron interactions the
potential wells are deeper; using a reduced mass of
5.4055 amu, it was necessary to determine the phase
shifts quantum mechanically at the lower energies. The
semiclassical method was then used above the energies
for which the two methods di�ered by less than 3 units in
the fourth signi®cant ®gure.

The mean cross sections needed to determine the
collision integrals are obtained by combining the 12
states weighted according to their degeneracy as shown
in Table 1. The resulting mean transport cross sections,
�Q1, �Q2, and �Q3, are shown in Table 2 for a range of
interaction energies. Once the �Qi are known, Eq. (1) may
be used to calculate the mean collision integrals, �Xn;s, as
a function of temperature. The four collision integrals
shown in Table 3 are su�cient to calculate transport
properties of binary gas mixtures to ®rst order [4]. Ad-
ditional collision integrals su�cient for higher-order
calculations of multiple gas mixtures can be obtained
using the �Qn of Table 2 in Eq. (1) or upon request from
the authors.

The truncated ranges of Tables 2 and 3 for aluminum
re¯ect the e�ects of spin-orbit coupling as discussed
below.

For pure gases, the transport coe�cients for di�u-
sion, viscosity and thermal conductivity respectively,
D�T �, g�T � and k�T � are de®ned in terms of the collision
integrals, �X, by

104Tÿ3=2pD�T � � 26:287�2l�ÿ1=2=�X1;1�T � ; �7�

106Tÿ1=2g�T � � 26:696�2l�1=2=�X2;2�T � ; �8�

105Tÿ1=2k�T � � 19:891�2l�ÿ1=2=�X2;2�T � ; �9�
where D is in centimeters squared per second, g is in
grams per centimeter second, k is in calories per
centimeter second, T is in Kelvin, pressure, p, is in
atmospheres, reduced mass, l � M1 M2=�M1 �M2�, is in

Table 1. Properties of singlet and triplet states for boron and
aluminum: state degeneracy and C5 coe�cients of the long-range
form of the potentials

State Degeneracy C5 boron C5 aluminum

1Dg 2 9.1 47
1R�g 1 0.0 0
1R�g 1 54.8 284
1Pu 2 0.0 0
1Pg 2 )36.3 )188
1Rÿu 1 0.0 0
3Pu 6 )36.3 )188
3Rÿg 3 0.0 0
3Du 6 9.1 47
3R�u 3 0.0 0
3R�u 3 54.8 284
3Pg 6 0.0 0
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atomic mass units, and the collision integrals, �X, are in
angstroms squared.

The principal collision integrals �X1;1 and �X2;2 are
shown in Fig. 3. As noted in Sect. 3, the ab initio po-
tentials were extended at small separation distances by
an exponential extrapolation. Consequently the accura-
cy of the mean cross sections at high energies (and hence
the collision integrals at high temperatures) is degraded
by this assumed form of the potentials. The severity of
the degradation depends on the extent to which the true
potentials at short range di�er from an exponential
form. The curves shown in Fig. 3 up to approximately

1500 K are substantially free of this possible degrada-
tion and are based on the ab initio potentials and the
long-range form of the potential. Above this tempera-
ture, there is an increasing contribution from the
extrapolated potentials, reaching approximately 6% due
to such extrapolations at 3000 K.

At very low temperatures the e�ects of spin-orbit
interaction must be considered. At large r, the molecular
states are described by wave functions jSKX> that
include spin-orbit coupling rather than jSK> for the
coupling scheme applied above. The jSKX> potential-
energy curves could be determined from ab initio
calculations with bond functions and a perturbation
approximation to include the spin-orbit interaction.
To avoid the large computational e�ort required for this
direct approach, we take a more expedient way to assess
the spin-orbit e�ects.

We modify the scattering treatment to take the ®ne
structure of the atom into account. The potential ener-
gies of the jSKX > are represented by the jSK> potential
energies that are described above, but are shifted in en-
ergy by an amount NEs, where the splitting energy Es is
taken from Ref. [33] and N is an integer (0±2) that is
based on the correlations between the two coupling
schemes and is consistent with the energy ordering found
in Refs. [2, 3]. The degeneracy factor is either 1 or 2
depending upon whether the quantum number X is 0
or greater than 0, respectively. The occupations of the
asymptotic (r ! 1) excited states are represented
by Boltzmann factors for thermodynamic equilibrium.

We ®nd that the results can be speci®ed by a shift,
DT , such that the collision integral Xn;n�T � that accounts
for the atomic ®ne structure is nearly the same as
�Xn;n�T ÿ DT � of Table 3. The values of DT for X2;2�T �
and X1;1�T �, are only about 6 and 7 K, respectively, for
boron, whereas, the respective values rise to about 60

Table 2. Mean transport cross sections, �Qi (a20), for boron and
aluminum

E(Eh) Boron Aluminum

�Q1
�Q2

�Q3
�Q1

�Q2
�Q3

0.00010 574.96 494.05 688.83
0.00015 466.80 395.35 577.49
0.00020 404.56 341.98 500.24
0.00030 335.15 288.60 414.41
0.00050 269.69 225.69 330.82 518.35 431.70 625.37
0.00070 236.94 199.36 288.23 451.75 372.87 546.02
0.00100 205.83 174.47 247.66 399.68 323.03 476.61
0.00150 197.39 157.38 232.87 340.61 282.31 407.00
0.00200 165.64 136.52 196.83 304.46 254.10 366.35
0.00300 149.04 120.05 174.50 265.19 216.98 316.61
0.00500 136.44 106.17 157.07 223.71 181.56 265.04
0.00700 121.43 96.52 141.06 204.36 162.00 239.37
0.01000 118.87 92.31 137.95 187.71 146.20 217.57
0.01500 107.23 82.67 126.18 169.86 130.61 195.71
0.02000 91.19 70.89 108.31 158.00 122.07 182.07
0.03000 83.72 63.59 97.62 141.19 110.62 163.38
0.05000 65.27 51.41 76.60 103.40 100.53 129.74
0.07000 54.00 48.95 65.59 80.56 84.09 110.51
0.10000 40.69 42.49 54.88 64.08 66.03 89.55
0.15000 29.32 31.96 42.69 51.54 51.21 70.09
0.20000 24.01 25.52 34.76 44.96 43.83 59.88
0.30000 18.92 19.24 26.36 37.59 36.17 49.16

Table 3. Mean collision integrals �X1;1, �X1;2, �X1;3, and �X2;2 (AÊ
2) for

boron and aluminum

T(K) Boron Aluminum

�X1;1
�X1;2

�X1;3
�X2;2

�X1;1
�X1;2

�X1;3
�X2;2

100 21.25 18.60 17.07 23.22
200 16.72 14.94 13.83 18.25
300 14.77 13.34 12.46 16.08 26.48 23.34 21.38 28.65
400 13.62 12.43 11.76 14.86 23.94 21.22 19.58 25.83
500 12.90 11.89 11.36 14.11 22.23 19.87 18.58 23.98
600 12.37 11.46 10.85 13.53 21.01 18.88 17.62 22.63
700 11.95 11.07 10.44 13.02 20.06 18.11 16.86 21.56
800 11.62 10.85 9.90 12.58 19.35 17.45 16.15 20.68
900 11.36 10.42 9.67 12.19 18.66 16.92 15.83 19.97
1000 11.01 10.13 9.44 11.83 18.12 16.47 15.42 19.38
1200 10.52 9.56 8.90 11.17 17.25 15.72 14.69 18.43
1400 10.10 9.17 8.45 10.67 16.56 15.08 14.04 17.70
1600 9.66 8.79 8.06 10.21 15.97 14.52 13.41 17.10
2000 9.08 8.14 7.42 9.45 15.00 13.53 12.37 16.16
2400 8.57 7.61 6.89 8.87 14.18 12.66 11.42 15.44
3000 7.94 6.97 6.29 8.23 13.14 11.51 10.27 14.55

Fig. 3. Mean collision integrals �X1;1 and �X2;2 as functions of
temperature
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and 70 K for aluminum. The di�erence between X2;2�T �
and �X2;2�T � is only about 1% at 200 K for boron, but is
larger by about 6% at 300 K for aluminum.

DT provides a temperature gauge to estimate the
lowest T such that the spin-orbit interaction can be ne-
glected for transport calculations. Improved low-T
transport data might be most readily obtained following
the method of Cohen and Schneider [34], which allows
the jSKX> potential energies to be constructed from the
jSK> potential energies using a spin-orbit interaction
that is determined from measured data for the atom. A
detailed study to determine accurate low-T transport
data is, however, outside the scope of our present
investigation.

Note that the collision integrals of Fig. 3 exhibit a
strong correlation, i.e., the collision integrals for alumi-
num have approximately the same slope with respect to
temperature as the corresponding integrals for boron,
but are shifted to a larger value. This is not surprising
in that the behavior of the potential curves for boron
interactions shown in Figs. 1 and 2 are found to be
correlated to the behavior of the potential curves of
aluminum with the same symmetry, but with repulsive
walls that are shifted to a larger value of r. For example,
a strongly bound boron state corresponds to a bound
aluminum state of the same symmetry (but with a well
that is broadened and shallower). Similarly, a weakly
bound boron state is related to a weakly bound (or re-
pulsive) aluminum state and a repulsive boron state
corresponds to a repulsive aluminum state.

It may also be observed from Fig. 3 (and Table 3)
that the collision integrals can be approximated by a log-
linear relationship at higher T , for example,

log��X2;2�Al � 2:174ÿ 0:294 log�T � �10�
for T above 300 K.

The similarity in slope of the collision integrals is also
found [8] for other members of the ®rst row of the pe-
riodic chart that have electrons in the p valence shell.
This leads one to expect that the scaling parameter [35]
that speci®es the size of the atom is the dominant factor
for estimating the magnitude of transport collision
integrals for collisions among P -state atoms. This
contrasts with the scaling found [35] for collisions where
the e�ective potential for the scattering can be described
by a van der Waals interaction; in those cases, the
scaling parameter [4], �, has a simple physical interpr-
etation such as the well depth [36] of the orientation-
averaged interaction energy.

As an application of these observations, note that
gallium occupies the same column in the periodic chart
as boron and aluminum (all have a common ground
state, 2P1=2) and, consequently, the present results may
be used to obtain an estimate of the transport properties
of gallium. At high temperatures the collision integrals
vary [35] as the square of a characteristic length scaling
factor r. For correlation of measured data Bzowski et al.
[35] have shown that a satisfactory value for r is the
separation distance for which the e�ective interaction
energy vanishes. E�ective X±X interaction energies can
be readily obtained from calculated He±X results by
adapting the method of Ref. [31] to provide estimates of

the ratio of characteristic lengths: using the quadruple
zeta basis set of Bauschlicher [36] for gallium, this ap-
proach yields a gallium±aluminum ratio of 0.9285. From
Eq. (10) and the scaling relation ��X2;2�Ga=��X2;2�Al �
r2
Ga=r

2
Al we estimate that the viscosity collision integral

for gallium is given by

log��X2;2�Ga � 2:11ÿ 0:294 log�T � �11�
and that the viscosity±di�usion ratio [4], A�, is approx-
imately 1.07 for boron, aluminum, and gallium interac-
tions in the range 300 K < T < 3000 K. Note, however,
that these results do not include spin-orbit e�ects for
gallium.

5 Conclusions

Mean transport cross sections and collision integrals
have been tabulated for B±B and Al±Al interactions.
The slopes of log��X� plotted with respect to log T are
found to be nearly constant for temperatures above
300 K as in other atom±atom interactions [8]. Further-
more the slopes for boron and aluminum are approx-
imately the same. The values of �X1;1 and �X2;2 for Al±Al
are found to be larger than the corresponding values for
B±B; this is expected since the interaction potentials of
the corresponding states are highly correlated but are
shifted to a larger value of the atom±atom separation
distance, thus resulting in larger collision cross sections.
A scaling application of the present results is illustrated
by estimating the transport properties of gallium.
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